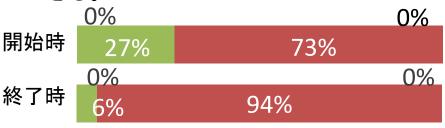
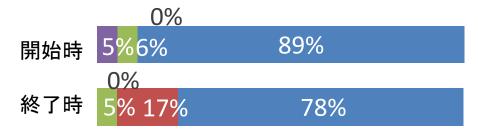
ルーブリック集計結果(総合項目)(1)




- ■中間(Intermediate)
- ■有能(Proficient)
- ■卓越(Distinguished)

実習態度

まじめな態度で真剣に実習に取り組むことができる。

安全に気を配り、実習を行うことができる。

与えられた目的を達成するために解決すべき問題を設定できる。

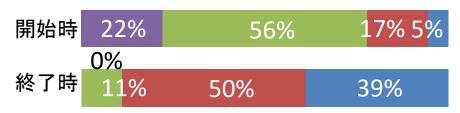
与えられた制約条件の下で、問題の解決策をいくつか考案することができる。

開始時	11%	56%	28%	5%
	0%			
終了時	5%	67%	28	8%

開始時 17% 50% 22% 11% 0% 87時 22% 39% 39%

ルーブリック集計結果(総合項目)(2)

回答者の割合

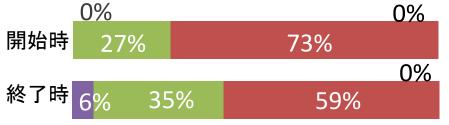

- ■初歩(Novice)
- ■中間(Intermediate)
- ■有能(Proficient)
- ■卓越(Distinguished)

実習態度

チームで決定した解決策と実現方法を分析し、必要な作業をすべて認識できる。

チームメンバーと協力して作業を計画し、計画に沿って実行できる。

開始時	39%		50%	6%5 <mark>%</mark>
終了時	6%	50%	33	% 11%



レポート作成

実習の目的を理解できる。

開始時	7%	43%	43%	7%
				0%
終了時	6%	29%	65%	

書籍や論文、HPの記事などを参考にした場合に、その出典を記載できる。

ルーブリック集計結果(総合項目)(3)

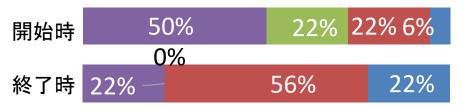
- ■初歩(Novice)
- ■中間(Intermediate)
- ■有能(Proficient)
- ■卓越(Distinguished)

共同作業でのディスカッション

自身の言葉で自分の意見を他人に説明できる。

他人が発する意見に対して同意・反論の意見を述べることができる。

開始時	33%	28%	28%	11%
	0% 0%			
終了時	56	5%	44%	%

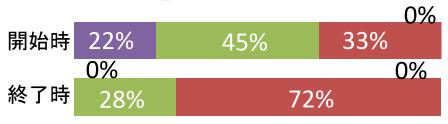

開始時	22%	22%	50%	6%
	0%			
終了時	17%	39%	4	4%

多様な背景から生まれる意見の相違をまとめ、合意を形成できる。

 開始時
 33%
 28%
 39%

 終了時
 17%
 5%
 61%
 17%

自分の専攻と異なる技術分野を理解し、課題を発見することができる。


ルーブリック集計結果(総合項目)(4)

回答者の割合

- ■初歩(Novice)
- ■中間(Intermediate)
- ■有能(Proficient)
- ■卓越(Distinguished)

コンテスト(プレゼンテーション)

実習活動の目的、実習内容、結果、考察、 および成果を伝えるための資料作成やプレ ゼンテーションを行うことができる。 困難な問題に取り組んだことを伝えることができる。また、その問題を解決している。

開始時	17%	3	9%		39%	5%
	0%					
終了時	3	3%		50%	%	17%

チームメンバーと協力して作業を実行した ことを発表できる。 質問に適切に答えることができる。

開始時	33%	44%	17%6%
,	0%		
終了時	50%	17%	33%

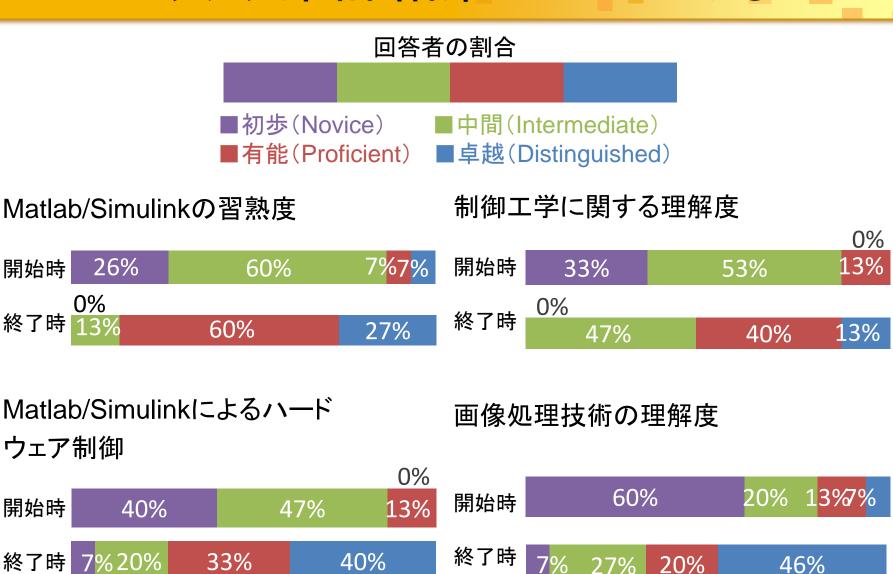
				0%
開始時	6%	67%		27%
終了時	6%	55%	:	33% 6%
小云] h4	070	3370	•	JJ/0 U/0

ルーブリック集計結果(移動ロボット制御①)

26%

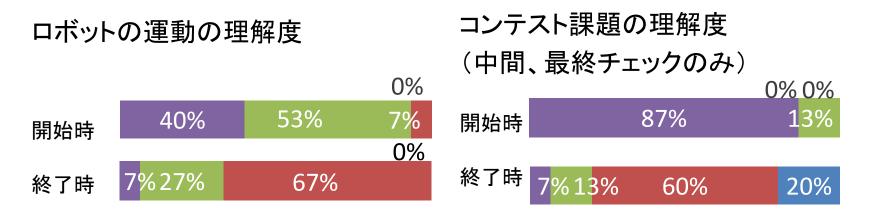
40%

7%20%


開始時

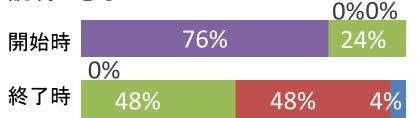
0% 終了時 13%

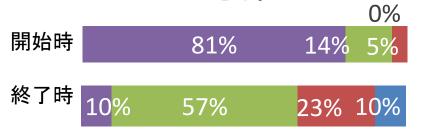
ウェア制御


開始時

終了時

ルーブリック集計結果(移動ロボット制御②)


ルーブリック集計結果(自動運転車制御①)



- ■中間(Intermediate)
- ■有能(Proficient)
- ■卓越(Distinguished)

自動運転についてその技術内容を理解し、 説明できる

Matlab/Simulinkを用いて制御系の設計や シミュレーションができる。

COMS,PRIUSのベース制御系を理解し、 機能の追加を行うことができる。

			0%0%
開始時		95%	5%
終了時	14%	43%	38% 5 <mark>%</mark>

ステレオビジョンの動作原理を理解し、正しく使いこなすことができる。

			070070
開始時		90%	10%
			0%
終了時	10%	62%	29%

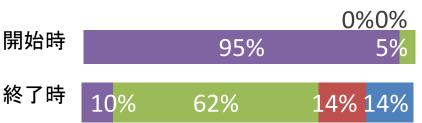
ルーブリック集計結果(自動運転車制御②)

■中間(Intermediate)

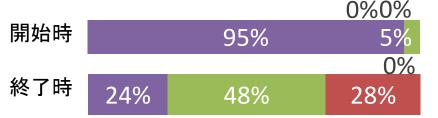
■有能(Proficient)

■卓越(Distinguished)

CMOS、PRIUSのベース制御系に速度パターンの設定と制御を行うことができる


95% 5%

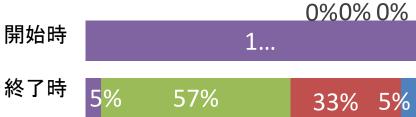
終了時


開始時

10% 52% 24% 14%

CMOS、PRIUSのベース制御系に回避制御、追従制度を行うことができる。

ステレオビジョンを理解し、その目的を達成するためのプログラムを作成できる。



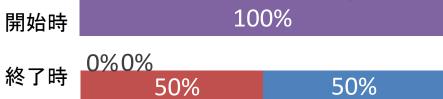
CMOS、PRIUSのベース制御系に経路を 設定して経路制御を行うことができる。

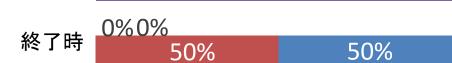
 開始時
 95%
 5%

 終了時
 57%
 29%
 14%

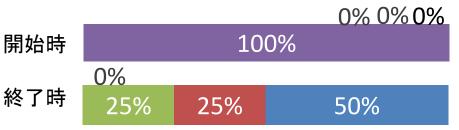
コンテスト課題について解決方法を考案、 実装、テスト、最適化を行うことができる。

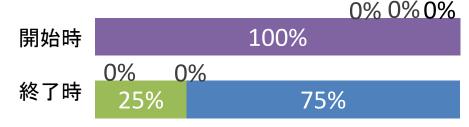
ルーブリック集計結果(@ホームサービスロボット製作①)


- ■中間(Intermediate)
- ■有能(Proficient)
- ■卓越(Distinguished)


チームリーダー・物体認識と機械制御

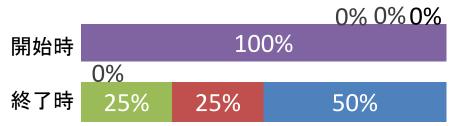
ROSを用いて環境地図生成、自己 位置推定を行える。

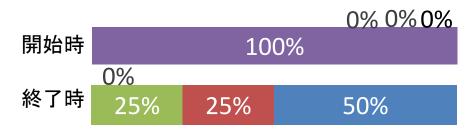

ROSを用いてナビゲーションを行え る。 0% 0% 0% 0% 0% 0% 100%


開始時

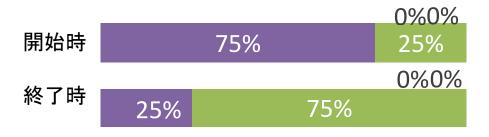
PCLを用いた物体の検出とDeep Learningを用いた物体認識ができる。 Exi@のアームを用いて物体の把持が できる。

ルーブリック集計結果(@ホームサービスロボット製作②)




- ■中間(Intermediate)
- ■有能(Proficient) ■卓越(Distinguished)

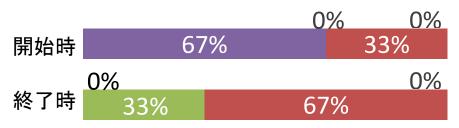
音声システム・画像処理系の実装

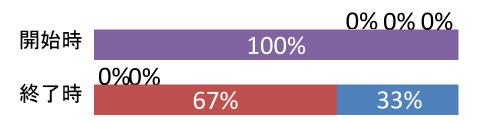

音源定位・音声認識ができる。

音声対話による指示が可能なExi@ の開発ができる

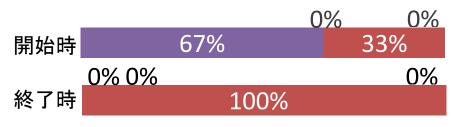
人物追従のシステムを組み込むこと ができる。

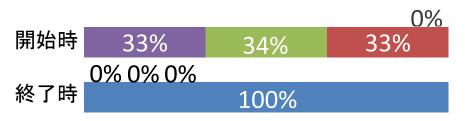
顔認識・個人認証をするが画像処理 のソフトウェア実装することができる。


ルーブリック集計結果(認識プログラミング)



- ■中間(Intermediate)
- ■有能(Proficient)
- ■卓越(Distinguished)


OpenCV等の画像処理ライブラリを 利用した運転支援システムを考案 し、実装できる。


スマートデバイスを利用した安全運転 システムを考案し、実装できる。

CNNを用いて顔検出や顔認識のためのデータ収集や処理プログラムを実装できる。

各自で定めた目的を達成するための プログラムを作成できる。

